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ABSTRACT
New results are obtained on the'\yvpropagation of
correlations in a Boltzmann gas on the scale of the mean
free path and the collisional time scale which appear to

support a conjecture of M. Green's on this subject.
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INTRODUCTION

-6 . .
In the past few years much resea,::'ch1 has been carried out on just
how the Boltzmann equation follows from the Liouville equation, and on how

12 Ih the

higher order corrections to the Boltzmann equation are found. -
present paper these questions are re-examined using the multiple time and
space scale épproachB’ 14 which follows from the well known Bogoliubov-
Krylov technique of nonlinear mechanics.

The major new results which emerge from the present analysis fol-
low from a careful examination of the behavior of the first-order correction
to the two-particle correlation function. It is found that this function exhibits
a variety of different types of behavior,among which are two different kinds of
singular behavior. We have shown that by removing the secular behavior of
this function, a condition on the zeroth ofder correlation function obtains
which determines its behavior on the collisional time scale and the mean free
path space scale, This leads to the verification of a conjecture of Green'58
concerning the zeroth order correlation functions. In addition, we have found
singular behavior for small relative velocities which is of an integrable kind.
The corrections arising from the singular region of phasé space have been
shown to be of higher order than the terms kept in the present analysis.

Finally, we demonstrate that the Choh-Uhlenbeck corrections to the
Boltzmann equation do drive the system to thermal equilibrium if we assume

that there is no secular behavior.
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I. THE BASIC EQUATIONS AND EXPANSION PROCEDURE

The starting point for the calculation is the B-B-G-K-Y hierarchy

governing the reduced distribution functions fs .

] s s!
(2,5, .08 15§ 26 51
"{at Yi %% m o 9x, ov j 85
) - R i o i
i=1 i=l j=1
(1.1)
s
_ n de 4 Z‘ 89 (fx s+l“ afs+1 12
T m s+l s+l bx . v 1 n
i=
where
= x, ~%X, . ' (1. 2)
1] o]l -3

The notation is the same as that in Ref, .13. It is convenient to measure
lengths in units of L the range of the interaction potential ¢, and to
measure time in units of rolvav , the titne of a binary interaction, with Vv
a typical pa.rticle}y_c_s}:loc»ity.

The Boltzmann regime is characterized by strong interactions and

systems which are dilute. Thus, we introduce the expansion parameter € ,

such that

2

’nr = € , <¢)/mvav ~1, € << 1 (1. 3)

with (@) the characteristic strength of the potential.

Rewriting (l.1) in dimensionless units but retaining the same labels

as above, we obtain



in1 ~al i=1 j=1 -l -1
o (1, 4)
o(lx; oql) 5 .
ms+1 »s+1 ‘8xi ‘ aXi s+l
i=1 ‘

In the following we will assume that the potential is repulsive and that the

ensemble is spatially homogeneous. Introducing the definitions

8¢(lx I 9 9
i i -]
and s s s .
‘ \ 9 ..
H(l,...s) = 22 Yo e T 25 ZS o (ij) (1. 6)
i=1 R RPN
0 .
(5-t- +H(1,...,s))fs = d§s+1 dKSH Z Oi,s+1) fs+1 . (1. 7)
i=1

Our object is to seek an asymptotic solution of (1.7) for € small,

1 . . .
We know that a simple power series in € does not suffice and that a more
complicated asymptotic representation must be found. The multiple time and

space scale procedure assumes that an expansion of the form

_ ¢ (0) 2 2 2
fs = fs (i"«l""'?is’m"“’ls’ t, €X 1peens €X €t, € Xpree€ X L€ t,ees)
(1) . 2 2 2
+ Efs (xl,...,x PV Y g t, Eﬁl""’eﬁs’ €t, € X0 o€ is’e t,...) (lL.8)
Zf(z)( v Y o , t, €x €x , €t ezx €2x ezt ) +
1,.:0,“ ’ml’ ont, 1,. oy s, Fy “1, cesy ms, 3 0o oap

will adequately represent the solution. The initial conditions on the fs must

also be expanded as in (1. 8).
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It is often convenient to introduce correlation functions gs ina

recursive manner

£,(12) = £,() £,(2) + g,(12)

, (1. 9)
= : 2 + 123
f,0123) = £(1)£(2) £(3) # 2 £(1) g,(23) + g, )
: P
etc,
It will be assumed that all the g vanish at t = 0 so that the injtial state
is one of complete chaos and only correlations arising from interactions
will be present in the system.
II, THE LOWEST ORDER BEHAVIOR
The lowest order equations follow from (1.7) and are
{*——+HO)( ..,8)} f() 0o . (2.1)
Thus, for s =1, we find
o1 \¥)
3t = 0 (2.2)
and for s = 2
© a8t . (0) |
f = e ’ ’ f (t=0, €t,...) . (2.3)
s s , 7
Throughout the paper we will indicate explicitly (as in (2. 3)) only those
arguments of functions which need special attention drawn to them.
The operator
(0)
S W.ous) = o (L8l (2. 4)

was first introduced by Bogoliubov1 and has been extensively studied by

Cohen. u Briefly, it replaces the phase space coordinates of the s particles
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by their values at time zero which are calculated using the trajectories

(0)

generated by H '(1,...,s).

For s =2, (2.3) becomes,upon using (1. 9),

g, (tet12) = [s_02) -1 £V en 10 e

+ s_t(l?_) gz(o) (t =0, €t, 12) . (2.5)

(0)

We first note the appearance of the nonphysical fuhction g, (t=0,€t,12) in
(2.5)., Such functions are a characteristic feature of the procedure used here

and arise in a characteristic way. In the present instance, in solving (2.1)

onthe t and x._ scales, it was implicitly assumed that the variations in

w12
4
€t and €x,, were negligible. The error committed is of order € as long as
t and x,, are of order unity. The general nature of this type of expansion

is such that these errors are corrected order by order. In another interpreta-
. . 14 . .

tion of this procedure  the arguments of the functions on the various scales
are assumed to be independent variables in the strict sense. In the present

paper we do not take this point of view but rather require that we be as near

, €t, €2t

as possible to the physical 'line', defined by t 1 20

. with t =t =
: o

0 1

t e+ =t

We next note that (2. 5) predicts a long range, finite correlation on

(0)

the X5 scale in certain cases, even if g,

(t=0, €t) vanishes. This
phenomenon occurs when the two particles undergo a collision in the remote
past, so that (S_t - 1) does not vanish. We will see that this region of phase

space gives rise to secular behavior in the next order. Note that in thermal

equilibrium, gz(o)(t) has a finite range since with fl(o) Maxwellian and energy
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(0)

conservation, g, vanishes for t >>l§,12|/l.Y.12| :

To next order (1.7) gives

(0) 8, () (0)
{——- + Hl 1,...,s)}f {8Et + HUL 8) ) ]
. . (0) ,
= 2.6
dx o dv Z 0 (i, s+1) £ 2.6
where
s
L TN 0 2.7
H (la ,S) = i a€X1 ( . )
i=1
In particular for s =1, we have
af(l) (0)
= 1 . 2.8
5t et S dx, 4y, ©02) 5 (t et 12) (2.8)
Upon integrating (2. 8), we find explicit secular behavior on the t scale
which is removed by requiring
Bfl(o) (0)
et S dx dXz e (12) fZ (o0, €t, 12) . (2.9)
Therefore we also get from (2. 8)
af (1) (0)
S dx , dv, © (12) [f ceen) = 1 (0, ...)]. (2.10)

In order to demonstrate that the decomposition of (2. 8) into (2. 9)

and (2.10) is valid, we must show that acceptable behavior for the time

(0) (1)

development of f1 in €t and fl in t results. In contradistinction to

other treatments of this problem, we cannot in fact demonstrate this here

(0)

since we have no knowledge of g, (t- 0, €t) and further cannot obtain any
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information on it in this order of approximation. We must therefore pro-
ceed to next order and, among other things, look for a determination of

0
gz( )(t= 0, €t).

1II, BEHAVIOR OF fz(l)

)

In this section we examine the behavior of fz

in those regions of
phase space where Ivlzl is of order unity and i?i1zl is larger than unity
{greater than ro). It will be seen that the analysis falls naturally into ex-

amining times t < lfilZ“‘XIZI and times t> Iﬁn‘/llzl .

We start from (2. 6) which for s =2 reads

9 (0) (1) 0 (1) (0)
(-a—t—' + H''(12)) fz + ('é-é'? + H (12))f2
- S ax, dv, (0013) + ©(23)) f3(0) (3.1)
The formal solution of (3.1) is
(1) _ ay ,, _
£,0 () = 5_(12) £, (t=0, €t)
t
! ..-_?._- . .....-8..- (O) 1
+S‘ dtt S 412 1- (e * i aéii) £, (¢ €t) (3.2)
0
+ g dx ,dv, (©(13) +©(23)) f3(0) (t', €t,123) }
We now define
5_, (123,13) = s HU23,33)t (3. 3)

and

H(123,i3) = H2023) + ©33) . (3. 4)
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Thus, using (2.3), (2.9), (3.3), and (3.4) we can rewrite (3.2) as

) (1)

2 (0, €t)

(1 -
£, (t) = §_(12) £

t

' " any ¢ (0).(0)_(0)
+ Sdt S_(g-gny12) {S dx , dy {9(13) ((S_t«“"'”’Snt-(123’23)) £ 1)

0

+(s_,023,23) -s__03) £V 45 123 (/%0 e - 1[40
), - (0) ()

-5 _,(13) g, (t=0,13) £, (2))

‘ (0) . (0) .(0)

+ ©(23) ((s_t,(123) -8, (123,13)) £ 08

+(s_,023,13) - s_ @3 Vel s a23) £ (0, en - V6O
0 0

-5_,23) g, (t=0,23) )(1))}

5 TN ) S () JI U N
_('a-a +X12 &g)(fz (t,Et)—fl (l)f.1 (2))} . (3. 5)

Equation (3. 5) consists of five groups of terms which we consider separately
below.

The first of these is
t

L= §dt' s_(t_t,)(lz) Sd§3dx3 {[e03) (5_,.(123) - 8 _,(123,23))
0

+ ©(23) (5_,U23) - 5_, (123,13))] fl(o)fl(o)fl(o)} : (3. 6)

It is clear that the [13] and [ 23] terms behave similarly so that we only
explicitly consider the [13] terms. First note that @ (13) provides the restric-

tion IXISI =1 and that the S operators cancel if for all t', 0 < t' < t

]
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|§23| > 1. Thus, |§23| must be less than unity at some time during the
integration. If particles [2] and [ 3] interact at time t< t' =t and
particles [1] and [ 3] interact at time t', these conditions are satisfied.
We denote this trajectory by [ 23] - [13]. Other interaction sequences such
as [23]-[12]-[13] and [12] -[23] -[13] are also possible but they are
shown below to yield smaller contributions to (3.6) as t becomes large,

Figure 1 shows the sequence [ 23] -[13]. Note from the figure that

§23 (t') ~ X23(t'-t?) + X 53 (t) . (3.7)

Thus, for the sequence to occur, t must be such that

]3523 - Y3 (t -T)] <1 (3. 8)

since t) ~ 1.
nce x,,(t)
We picture the cone of allowed velocities in relative coordinate

space in Fig. 2. From Fig. 2 we conclude that the solid angle of allowable

relative velocities is

1

aQ ~ —— . (3.9)
x5
o~ 23
The further assumption is made that
03) (s_,,023) - 5_,023,23)) %) £/%2) ~1 (3.10)

for those values of X3 and V3 for which the integrand does not vanish,

Thus, the contribution to I1 is

t
S\dt‘ S_ (g1 12) Sdiim ‘Sf(x3)dx3 : (3.11)
0

| _|<1 aQ

~13
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Further,
(3.12)

and
(3.13)

so that we may write (3.11) as

t

' 1 - 2
Sdt ,s_(t_t,)uz) — S\f(z + ]v23) %, ]xml d]xml . (3.14)
0 212

We note that for trajectories for which lxlzl >1 for all time

(0) _ . ‘
H2) = v, - 800,

The expression (3.14) then becomes

! lx |
§ ~ — s 12 (3.15)
. x v (t "k vt 12121

upon assuming that the velocity integration in (3.14) yields a quantity of
order unity.

When we consider the other interaction sequences such as [ 23] -
[12]-[13], etc., it is clear that the solid angle of relative velocities is

o~ ! 1 ~ } ' (3.16)

2 - 4
x,01° x,,O1F  Ix,00)

so that a faster decay than 1/t will result, We conclude therefore that the

dominant behavior of I isa 1/t decay.

The next group of terms in (3. 5) is

12 = S dt! S_(t_t,)(IZ) S‘ d§3 d:/;3 [e13) (S~t'(123’23) -5 _(13))

+ ©(23) (S_,023,13) - §5_ w (230] f(o) (0) (0) . (3.17)
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Again we only treat the [ 13] terms explicitly. Introducing the change of

variables

x'=x., x,. 5 x_ -X X, -x (3.18)

enables us to write

ut©) . 9 9

(12) = H (12) + v, * (50— + 577) (3.19)
-13 ]
with the relative operator given by
0
Hr (12) = XlZ *a—';;'- -002). (3.20)
12
We also have
(0) _ .9
H " "(123) = Hr(IZ) + Hr(13) + vy Bxl' —’ o(23) . (3,21)

Using the above relations we can carry out the time integration for some

of the terms in (3.17) with the result that the [ 13] contribution to I

2
becomes
S(H (12)+H (13))t  -H (12)t
r r / r (0),(0).(0)
d§13 dx3 [e ~e ]fl fl fl
t -H_(12) (t-t") 5 -(H_(12)+ H_(13) )t
+S dt* e 13 Wiz Y13 G {e
. %13
“H_(13)t_
e T } fl(o)fl(o)fl(o) (3. 22)

It is clear that the first integral in (3. 22) is finite. The second integral

in (3.22) may be written as

R “H_(12)(¢-t") ~(H_(12)+H_(13) )¢’
Sdt' e dxyp vy [visl je
1
0 .
13,7 %
-H (13)t_ B | (3.23)

- ©0

e =
~13y,
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The trajectories appropriaté for consideration of (3.23) are shown in

Fig. 3. The upper limit of the x integration in (3. 23) yields a finite

~13
result. We see this by phase space arguments similar to those used in
treating (3. 6). However,if no [ 12] interaction occurs then the argument
differs and is similar to that following (7. 2). For the lower limit we note

that Hr(13) effectively vanishes since the [13] interaction has not yet

occurred, Thus (3.23) becomes

t
-H (12)T -H_(12) (t-7)
r T (0).(0).(0)
SdT e dﬁmldxl?’ v 5] (e -1) A (3. 24)
0

For t < lxlzl/lvlzl, Hr(IZ) commutes with 1X13l and (3, 24) becomes

H U2t -H (2)7
5(17 gdx dyy5 15! (e ' ) 4 f(O) O (0) (3.25)

which clearly vanishes. For t > lez ’I/Ivlzl , (3.24) may be written

Iz /el ot 1 -H_(12)7
) o i S ar © delz 13 |.‘.’.13|
0 'ﬁlzl/lllzl
-H_(12) (t-7) |
x (e 7 1) (OO0 .26
The first term of (3.26) is just
lx | SH t
. e r* \ (0),(0)(0)
MY Sd-’im ASER TS (e -1) £ (3.27)

which is spatially secular. The second term of (3.26) is
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t -H_(12)7 +H_(12)7
il S\ a7 ESERDAE lvysl e
-H (12)t -H (12)7
X le T e T £0); (01 (0) (3.28)
11 1
which vanishes in the same manner as (3. 25).
We see therefore that 12. is finite for t < ]Zilzl/l»Y»lZI but
exhibits secular behavior for t> ]xlzl/]vlzl . It should be noted that
in the examination of I2 {and I3 to follow) we have treated the integrals
as if the limits of integration were independent of X3 0F X, In the ap-
pendix we show that this neglect is justified since the additional contribu-
tions arising from the limits of integration all cancel.
The next group of terms we consider is
t
L S dt S_(t_t,)(l?_) S dx , dv o [6(13) + 6(23)] S_,.(123)
0
0
x (8520, ey - %) /2y £ V3)) . (3.29)

We use (1. 9), (3.20), and (3.21) to carry out some of the time integrations

in (3.29) with the result

(0)
13 - dff»sd.‘.’.s {e-H (123)t e-Hr(lz)t ]

X (Z fl(o) gz(o) (0, €t) + g3(0)(0,et))

t

S‘ “Hp(12)(t-t') S 3
, ! r . m—
+ dt! e 13 Vs { Vi3 ™ 9(23)1

(0)
-H ! E
X e (123}t ( fl(O) gz(o)(O,et) + g3(0)(0,et))- (3.30)
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The first integral in (3. 30) is finite because both the integrand
and the range of integration in 3&3 are finite. The O (23) contribution
in (3.30) is also finite because if l?ﬁ:m‘ is of order unity, the Hr(IZ)
oper.ator can only act for a finite time. If li{nlzl is large, then ‘3‘.23'
must also be large and ©(23) then vanishes.

In order to proceed with the analysis we are forced to make
assertions on the behavior of the correlation functions and then demon-
strate a posteriori that they are correct. We will assume here that
gz(o)(t= 0, €t) is finite in the region of phase space corresponding to the
two particles having alr'eady collided and is zefo elsewhere. The rationale
for this assumption follows from the discussion after (2. 5) where we con-

(0)

2 (t, €t) was finite in this range of phase space. We make a

(0

similar assertion for g3 ) (t=0, €t), i.e,, it is only nonzero in the region

cluded that g

of phase space corresponding to two successive binary interactions having
occurred involving all three particles.

Thus, we examine the remaining terms in (3. 30)

t
. =Hg(12) (t-t') N
Sdt © Sdiiw dvs Y3 ' 5%
=13
0
x o LHr(12)+Hr(13) - 0(23)] ' (3.31)

x 1590 g, %23 + %) &, V03 + 1{%3) ¢, V02) + g/V23)]

and conclude that the terms involving integration over particle [ 3] must be
nonsecular. This follows since over most of the range of integration they

are, in fact, zero and the range in which they are nonzero is of order
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1/lx13|2. The only possibly secular term in (3. 31) is thus

t

. -Hp(12) (e-t1)
Sdt © ¢§ml mslvlﬂ
0 3513 =+ e
x o LHrU2) ¥ He(3)-0(3)]t ((0)5) =0 €129 . (3.32)
X1z 7%

i
The contribution from the upper limit in (3. 32) vanishes since the operators

(0)

stream the arguments of g, into the region of phase space for which it

vanishes., This can be seen from Fig., 4 since the [13] interaction changes

v by a quantity of order unity and X

Yy is also changed by order unity,

~12
For the lower limit of (3. 32) we refer to Fig. 3 and note that both

the ©(13) and ©(23) operators vanish., Thus, 8/8513

reduces to the identity
operator and (3.32) becomes

t

(4. L -He(2)(t-t") S‘ -He(12)t!
Sdt © dfil3ldl’~3 lvy5le
0

x (03 g0

. (12, 0, €t) . (3.33)

It is then clear that for t < lezl/lvlzl » (3.33) becomes

‘ (0) -Hr(2)t ( )
ot (S )3 dvg |y, (3)) i (t=0, €t,12)  (3.34)
Xp3l <1

and is secular.

The next group of terms is

N

t
- ' (0)
—Sdt s(tt)(lz) de dv . [e13)s_ ol13) g, (13) £
0
o

+ (23)5*00(23) g (O)(23) f(o)(l)] ; (3.35)

2 1
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This expression clearly vanishes since the S__ operators project the

coordinates into the region of phase space for which gz(o) vanishes,
The last group of terms (3, 5) may be written
t :
9 a
s =~ S dr 5_,02) (ggr + Y12 " Fex !
12
0
x {fz(o)(t T, €t) - fl(o)(l) fl(o)(Z) 1. (3. 36)
For t < |§12|/|v12| , the Soperator commutes with XlZ’ so that (3. 36)
becomes
t

) ) (0) (0),.. .(0)
i S A7 (5er T Y12 86251»2) (£ Ater) -5 4 7 42 (3.37)
5 ,

Further,we note that

(0).(0) _ _(0) _(0)
S g = £, 0=7T=t, t< l?.ilzl/lfiml (3. 38)
so (3. 36) becomés
(0)
) R -HU 12 (0),,
-t Ser + Yi2 -——-——8€X) e g, (t = 0, €t, 12) (3.39)

which is secular.

IV. PROPAGATION OF CORRELATIONS

(1)

We now want to collect all the secular terms in fz

that their sum vanish so that in fact fz(l)

first demonstrate that if we remove the secular behavior for t < lxlz l/lvlzl )

and require

will exhibit regular behavior. We

we will also have removed it for t > ‘xlzl/lvlzl .

To prove this statement we write {(3.1) in the form

8 (0) 1)y -
(g7 + H 12)) £,77(t) = A(t) (4.1)
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and solve this to get

1(0) (1)

Wy - 12) (t-t) £, (t,)
. |
(0) '
+ g agr e HA2ME-tT) p ey (4.2)
%

The trajectories contributing to (4.2) are shown in Fig. 5. Now choose

-1 (4. 3)

and write (4, 2) as

(0) .
M)y o cH 02+ x5,/ vy @ mlz
£, = e S A B )
?+l~l§12|/lxlg| t ©)
+ S dt’ +S dt! efH (12)(t"t')A(t'),
t-l-xp /vl e Ixppl/ 1y, 1
(4. 4)
The last term in (4. 4) can be transformed so that (4. 4) becomes
M) - ~EORRH x50/ v D ) E3Pl
f (t):e 12 m12 f (t— )
2 2 l.,.lzl
trl-lxpp /1y, | “Ltlx, 11y,
+S art e-HON2) (t-t") 5 41 +3‘ ar o-HOM2)T 5 1)
: | 0 ,
t-l-lxp, /0,1 (4.5)
The corresponding expression for fz(l) for t < lﬁlzlelz‘ may be
written - __H(O)(lz)t ) t ( )(12)
fz (t) = e fz (0) + S dr A(t T) . (4. 6)

0
(1)

We see that the first term of (4. 5) projects fZ into the phase

space region which does not lead to secular behavior. The second term of



-19-

(4.5) is clearly of order unity., The last term of (4. 5) is the same func-
tion of (‘3‘.12‘/]"12] )-1 that the 1ast'term of (4.6)is of t. ‘Thus if (4. 6)
is rid of secular behavior, (4.5) will not exhibit secularities.
Upon collecting all the secular terms for t< |§12!/|X12l , we
have
(0)

0
a . _ 9o (12t (0) ,, _
(et * Y12 " Fex) © g, (t=0,12)

2
+(0)
+ Z (S dxj3, dvg vyl f(o’(s)) 210 12)= 0 (a7
i=1 131 =1

which describes the propagation of correlations on the collisional time

scale and the mean free path 1ength scale. The quantity

viv,y, €) = Z g dx i3, OV, \vlslf(o)(s) (4. 8)
i=l 'x13l$l

is clearly the effective collision frequency of particles [1] and [ 2] with [ 3].

We solve (4.7) and have

-H2) (0 [

g, , Vo,V t=0, €x,,, €t]

wn 12 wnl’ om 2’ T w12

= exp[—S V(XI’XZ’ €t') det'] (4. 9) »

(0)
-HT2)e g (0) Vo, v, t=0, e€x

X
€ > &Yy ¥, » X2

€v 2 (t-—to), Eto)

where Eto is an arbitrary initial time. The result (4.9) is easily

generalized to
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(0) -
-HYU(12Mt-t) (O -
ne g, )[Xlz Ypla b €xpy €t
= expl - S (v Y ,€t') det'] ‘ (4.10)
(0),,
. -H (12)(t-t) (0) -
X - -t
© (2120 Y1 ¥pr b €X1p - €y (ttg) €8]
with the restriction
- 1) <
(t-t) < |x;,1/1¥,, | (4.11)
which was imposed in obtaining (4. 9). In view of (4.11) we can let the H( )(12)
operators act in (4,10) and get
0 - —
g;. )[ilz AT U ATR PR SPRLY
€t
= exp[-,- S v(vl,vz,et')d€t'} (4.12)
€t0
(O)[x -V (t——t-) V., v._, t, €x . - €v _(t-t.), €t ]
2 12 Tl w2’ T T2 ~1277 707 770
It is clear that we have the freedom to return to the physicaly”line" by
c¢hoosing _ :
to =t . (4.13)
Thus, we simply rewrite (4.12) as
(0) - -
[X Z "zlz (t’t)r Xl: Xzy t: 63{*12’ €t]
€t
= expl - S V(XI’XZ’et')dEt'] | (4.14)
€t
(0) - — - -
[x Vip (t-th Y, Vo g, 6512-6X12(t-t),6t]



-21-

Equation (4.14) can be put into a more transparent-form by noting

from {(2.1) that

(0) [Xlz’ Y1 Vg b €% et]
(0 ‘
= (e (12) (t-t) 1) f(O) (0)( 2) (4.15)
(0) -
+ -H U (12) (t-t) (0)( IZ'XI VZ F, €t, Ezill)

However, with the restriction (4.11), the ff term in (4.15) vanishes while
the other term on the right-hand side of (4.15) is identical to tvhe left-hand

side of (4.14). Thus, (4.14) may be written as

(0) ,
g, (X Yp Yo b €xppr €F)
€t
_ 0) <
= exp[-S l/(€t')d€t ] g2 [x Y, (t t), VYo t, €x 2~€X12(tvt),€t}.
€t

(4.16)

(0)

2 into the region of

We can carry this one step further by projecting g
phase space for which it vanishes by assumption. To accomplish this we use

(4.15) in the form

(0) [0 - Yo (58D ¥ X, B €2y -y, (), €t ]
(0) e .
- (e-H [512—z12<t—t)](t-r)~l> fl(O)m f1<0).(2) (4.17)
where
_ |x (t-1) |
f g s omlzTeiz TN (_..,.__1. ) (4.18)

leZl
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(0)

and we have written the arguments of H' '(12) explicitly to avoid confusion.

Thus, we finally obtain

€t
gz(o) (ﬁlz’ﬁirla' t, €t, efilz) = expl -g ”(Xl’fiz'a') det' ]
| €t ‘
(0) - ' _
x [ % -y (eDlE-T) £1%0, ) fl(o)(z,st). (4.19)

The result (4.19) is pleasing physically since it shows that the correlation
is generated by the collision of two particles and then sticks out long thin
arms in phase space until a collision with a third particle occurs which causes
it to decay exponentially. A conjecture of Green8 appears to be in accord
with this picture. It is interesting to note that the result (4,19) supports the
Bogoliubov hypothesis that higher correlation functions become functionals
of the one-particle function. We see, however, that it is not a functional of
fl at the same time but rather there is a history dependence.

We conclude therefore that we have removed the secular behavior ’
of fz(l) subject to the assumptions made earlier on the phase space behavior

of the correlation functions.

V. VERIFICATION OF PHASE SPACE ASSUMPTIONS

We now want to demonstrate fhat there is a consistent solution of
the equations of the hierarchy which has the properties we assumed earlier
for the correlation functions, subject to the initial conditions of chaos at
time zero. We therefore drop the assumption that gs(o) vanishes unless

there have been s binary interactions and are thus forced to consider all

the equations of the hierarchy jointly since, in principle, g(so)1 will depend
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(0)

on g, etc,
We obtain from (2, 6)

(0)
Dy = B ,(1,...,s)(t-t0)fs(1)(to)

+

s
(0) |
. =HYUL LLLs ) (-t . (0)
dt' e tg dx 19 en }: O, s+l) £, (t)
i=l

L

(o d

0 ' IX1 s+1"’

5D

(0) 1, | -
(aet + (L 0s)) £, (t)} : (5.1)

Our object is to remove the secular terms from (5.1), and in so doing,

(0)

obtain an equa.tlon of evolution for g which is free of our earlier assump-

tion., We find it easier to solve the dynamical problem piecewise than to
;

consider the whole problem all at once. Thus, we assume that during the

time interval t - ty: which is order unity but greater than unity numerically,

none of the s particles is interacting. We then join such solutions across

an interaction interval, 7, of order unity. The rationale follows from our

earlier observations that secular behavior arises in t - t_ intervals and

0
that T intervals contribute terms of order unity,
We now substitute (2. 3) into (5.1) and write
] 9 (1) (0)
(t to) ('”-'-""aet + H ' (1,....8)) fs
(0), :
_ SHONL, L) (E-tg) L (1)
=~ fs (t) + e fs (tO)
' UM
, . - 1,...8)(t-t") (o)
+Sdt e {S ms+1v+129(1 s+1)f (t)
t i= /
0
ml s+1{ 1 '

(5.2)
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Since we wish to collect only the secular terms from the right-hand side
of (5.2) we will lump all the honsecular terms into a quantity called Ns.
We assume that fs('l)(t ) is not secular and that we w111 remove the

secularities from f (1)(1;) Thus the first two terms on the right-hand side

of (5,2) will be put in Ns. It is convenient to introduce coordinates relative

to x, and write
-i

H(O)(l,.;.,S) = Hs(i) = v -8%— +Z 'Y«ij Z Z 9(13) (5. 3)
R I 1 j>i
and
10, . e4) = @) =H @ vy, ax z O, s+).  (5.4)
' ’ i, s+l
Equation (5.2) may then be written
9 (1) (0)
(t - to) ('é*'é-,c-' + H (1,...,s))f’s
S .
N o-Hs(i) (t-t")
S S 9% o141 Wesl
i=l t -
Iii, s+li—l
s
5 c
[ (1)+H(1)+v s+l | Bm - —ZQ(J,s+l)J
b i, g+l L %
J=1, j#i
~Hg41(i) (t'-tg) ,(0) ’
X e 8 s+1 (0) + NS . (5. 5)

Note that the O (j,s+1) terms can be included in Ns since the time interval
over which they act is limited and thus they produce no secular behavior.

We then carry out some of the time integrations in (5, 5) and have



-z 5‘;

(t-t )(8€t + ulq, ..., ))f(o) Z S 4% go1 et
: | =

ml S+1

x [ FottliMi-to) _ -Hal)(t-tody (O,

s t
\ 'H (i) (t-t") )
1 p——————r
+Z S ' e S X 1 et Y, st | Bx
t .

in i, 5+1
0 , lx:, s+ll-“1

x e’Hs-H(i) (t' - tg) (0) (t ) + N . (5. 6)

It is clear that the first group of terms on the right-hand side of (5. 6) now
should be put into NS,
It is convenient to add and subtract terms i . (5. 6) to try to mirror

the earlier calculation, We therefore write

8 t
9 (1) (0) _ , ~Hg(i)(t-t")
(t -to) ("8—'6'? + HY1,....s)) fs = z S dt' e
~ i=1
9
X diis»i-l —s+l »«1 s+l ox .
i, s+l
|X1 s-l-li<
S
X exp (H (i) + v. . ———i—-—v -O(i,stl) - ) O s+1)) (t'-t)
i, s+l Bxi ’ I 0
=1, j#i

X [ £(0) g +1)f(0)( )f( )(t ) + f( (s+1)(f (t ) - (0)() (0) it ))

S

# (18 ¢ - P4 1O ))] + N_. (5.7)
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We first note that, in effect, the last term in the exponential operator in

(5, 7) can be thrown into NS since it is only nonzero if both the if.}l and

1)

jth particles interact with the s +1st particle. In the treatment of fZ

we saw that such configurations do not yield secular behavior.
To proceed with the analysis of (5.7) we next note that since the

s particles do not interact with each other, (5.3) reduces to

8
9 9
1 = L R, * rmr——— ‘. . 8
ORPAE > L (5. 8)
Further, in our present coordinate system, fl(o)(s-!-l), fl(o)(i) and fs(—ol) (to)
are all independent of X, Thus, Hs(l) and Yisl 8/8351’ ol " O (i, s+1)

may be regarded as commuting operators. Therefore, the first term in the

-

integrand of (5.7) may be written as

st
Z S dt! dx d . 9
Sstl “mstl »Ysi,s—!*l ox .,
. m1,8+1
R T PR
mi,s+1 -
x ( L - @l s HD)) (- tg)
P\~ \¥ien Bx, . " @l Y
f»l,S'l'l
(0),_ .1y £(0).y -(0)
» .
£ (s H1) £ ) £ (k) (5.9)

From the second group of terms in (5.7) we get
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8 t
\’ ,H (i) (t-t")
t s
Z« S o S Ui, 541, sl %4, o
t

i=l ix ‘—,‘
i, st+]
x exp‘; (B0 4y, sy g - Oli.s+D) (t'-to)]
~i,stl
Z{'-l s+l
H
x 11 (¢ e ) - £/ 1 . (5.10)
ier 7T

Il

The upper limit in (5.10) can possibly contribute a secular term. In the

lower limit we note ’that Yietl a/aii’ el " ©(i,s+1) acts in the exponential

L) y

to yield the identity operator and upon using (5. 8) we can bring the Hs(i)

operator through. The lower limit of (5.10) can thus be written

8 t
' (0) (0) (0),., . (0)
2 Sdt ;. s+l Ay 12s el (54D (f (t) - £ (l)fs_.l(t))
t

i=1

| <1 Xi, 84l T

0 l;i il

i, s+1
(5. 11)

It is advantageousto force this expression to resemble (5.9) and we thus insert

the identity operator to get

st
1

Z Sdt gdx s+l a4l %5, o

i=l )

|»1 f:H-ll =1

X eXP{' (Xi,sﬂ ’ a/a?ii, g4 -~ O 0 s“)) (¢! ’to)}

( (s+l)(f(0) ()f(o) )) . (5.12)

Zi, s+l
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We can further undo the x s+1|’| integration and rewrite (5.12) with a

correction term from the upper limit, Rather than pausing to do this here

we collect all the,resultys and s;mply rewrite (5.7) as

O S (B )
(-t) (g + HO sy 1)

S t - , ‘ v

S dt' ‘ dV . ’- i m'?'-mm
ms+1 m3+1 ml $+1 9x R

=l ¢ iy B

0 '«»1 s+l k ' !

| oy T (o, (0)

X QXP["(KLSH m - 6(1&’*’1)) (t -to’)] "fl (s+1) f,s (t)

4+ R 4 N (5.13)
S 8

where R is

st T
, (g o mHsli) (5-t7) S e
‘Z Sdt € 1 dx: s+1 ,d s+1 ‘Vl s+1|
=l tg

* exp{-—(_ (i) + ;’»1 s+] ' ox a" T e(i,sfi)) ('t" ’to)]»

n»i,’ S+1
iil S-i«lu =t
x £{(s41) (s “”(t ) - “”m £ o, ))]
R
Temgt]l Temstl i, s+l ox . ‘
: m‘;,sji'l
X exp{- (Hs(i) + v ax‘a; - e (i, s,+1)) (t' *to)]_k
’ i, s+l

x (£9) (e - £{%%en) fs“”(ton}

This equation ceorntinued on next page.
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t

3

izl to

0

X exp[ ( -i, s+l ,Sxi a4l

(0)

£ (£ V0 - Ve

Next we note that the operator

8,
eXP[ '(Xi,sﬂ | ox,

~al,

(0)

s+1

At S i, s+l dz-s’i'l l'Y~i,‘s+11

- e(i,‘s+1‘)) (t' - to)}

xl s+l”

())

] e(i,s+1)) (t'-to)]

occurring in (5.13) describes the usual two-particle interaction and for

t' -t

0

we can replace (5.15) by

eXP{' (Xi, s+l %,

”‘“,1

]

?

s+1

> 1

- - O (i, s+l)) tw}

Thus, we may rewrite (5.13) as
0 (1)
s ) 1]
s
s d d -
N Xstl “Ystl Si, s+l Ox.
L ol $+l
i=1
N . 1 .(0) - (0)
X exp[- (-'Y«‘i, s+l *8-—;—"—"“— - 6(1, s+l)) tooJ f1 (s+1) fs (t)
i, g+l
R +N

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



-30-

If we now substitute the cluster expansion in (5.18) there results

__3__ + H(l)(l, - .,s)) gs(o)

det
S

S (e, o o

- e 5+] Xs+1 Xni,s—i-l 0x .

! i, 8+1

i=l

0 . (0) (0)
X exp{— (Xi, s+ P - 0634, s+1)) too] f1 (s+1) gs (t)
i, 541
t F_ {RS} t G {Ns} (5.19)

where Fs and Gs are fpnctionals of the Rs and Ns, respectively. We do
not write out the explicit expressions for FS and Gs here but simply note
that they are complicated sufns of products of the R's and N's involving

j particles with 1 £ j =< s .

From (2.1) we have, for the time interval t-t

0:
) 0 0
(-8-; + H )(l,...,s)) gs( Yoo, (5. 20)
Thus, combining (5.19) and (5. 20) we get
(0) (0)
og og
0 0 1 0
""5%" + ul )(1,...,s)gs( Y+ e BZt + et )(l,..,,s)gs( )
_ (0) .
=- €v(y,...y _.€t) g +€F {RS} + eG{N_} . (5. 21)

In writing (5.21) we have defined the generalized collision frequency
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s
V(K]_""’Z.s' €t) = Z S d§s+ll d.Y,.s+1 I'Yni,s-*'l‘
i=1

(5.22)
9 . (0)
- L e - +
exp{ (%5 o " 50 O (i, s+1)) tw} £ (s+1) :
i ], s+1 x = -
i, s+l
i
The expression on the right—hand side of (5.22) evaluated at Xi s+ =+ o0

has been lumped with F to become F'.

The piecing procedure for solving the complete problem then con-
sists of using (5. 21) in the intervals in which the s particles are not inter-
acting,and then using (2.1) in the intervals in which they do interact. Clearly,
for a finite number of interactions we introduce a relative error of order €
in this way since we have used (2.1) rather than an equation good to one higher
order in € as is (5.21). This relative error does not influence the outcome
of the proof,however, since we wish to make statements concerning a zeroth
order quantity.

In addition to the piecing procedure we will use an iterative procedure
to solve (5.21). The lowest order approximation consists of neglecting F’{RS}

in (5.21). Note that the interval can be as long as t-t_ ~ 1/€ . Now, G{NS}

0

certainly has at least one term which behaves as 1/t - tO while all the others

behave as
1

(t-t )"

, 1< p = s . (5.23)

Therefore, the G{NS} terms can at best produce a term which is of order

(0))

€ in (gs 0

after integrating for a time of order 1/€. We proceed to the
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(

next iterate by substituting (gS 0))0 into F'{Rs}. By carefully examining

1)
2

Rs in (5.14) using arguments analogous to those used earlier for f we

can conclude that no secular terms are produced. Thus, F'{Rs} actually

behaves in the same fashion as the G{Ns} terms did in the lowest approxi-

(0),
1

mation. We therefore see that the equations governing (gs

(0)
s )0'

will
essentially be identical to the equations for (g The net effect is,then,
that as far as the present proof is concerned, we can simply drop the F'
and G terms from consideration and we need not iterate at all.

We can now return to (5,21) and for s = 2, we have

. (0) (0)

og og :
22—+ m112) gD +e 2 + enM12) ")
= (0)
=~ €p (Xl’ Yo €t) g, . (5.24)

Note now that (5. 24) holds in all regions of phase space and for time intervals

L

in which particles [1] and [ 2] do not interact with each other. However, we

can now apply (5. 24) to the situation in which

g, (t=0, et=0, 1,2) = 0 - (5. 25)

and we see that it remains zero until an interaction takes place. During the

time of interaction we use

i 8g2(0)

=— + 1%2) ¢/ - en2) £{0 0 (5. 26)

which then creates the correlation.
(0)

Thus, the above arguments have related to its physical initial
g, phy

value and have demonstrated that the assumption that gz(o) vanishes in the
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region of phase space corresponding to no previous interaction is, in fact,
correct. As a by-product we have also obtained (5. 21) for the s particle
correlations, and can thus describe the long time, long space behavior of

all the correlations.

V1. BEHAVIOR OF fz‘” for |y, l<<1

On physical grounds we are led to suspect that some sort of singu-
lar behavior arises for ]vlzl <<1 since two particles might then stay
together for times comparable to the time between collisions, We therefore

investigate here the nature of this singular behavior. We assume that v ..

12
is small and that the range in configuration space is limited by
, v. 2
12

A crude estimate of the behavior of fz(l) follows from (3.2) under these as-

sumptions. We may assume that the integrand of the t' integration is of

order unity for (0) . :
-F 2 _t!

For such configurations, the interval in t' for which this is so is of order

-1 which indicates that fz(l) varies as |vlz|'l for ’Vlzl <<1,

¥,
To treat this more formally we scale the variables in the usual man-
ner of asymptotic analysis. We write

5 ~ ~

=z € Xlz R X»lZ ~ 1 . (6-3)

212

Assuming that (6.1) holds, we have
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20 ~ ~
o Uz, 1) ~ € otlx, D o=, ~ 1. (6. 4)
We then write (2.1) for s = 2 in the form
9 9 ( } (0)
+ v : - g
{at w12 83:12 83;»12 av X. ) 2
9\ ((0),, ((0) | '
(av ) 3, )fl (1) £, 72) ’ (6.5)
mlz
Introducing the variables
Yiz T XY YEL Yt (6. 6)
enables us to write
] -2 12
and, by Taylor expanding,
| (0)
V A\
(0) (Xl’) 0 (Y 12 (0) , =12=12” v vl
(L) 7 A (5)t 5 v, 4 - — +....(6.8)

We now rewrite (6. 5) in the scaled variables and require that all the terms

remain in the scaled version, This yields

{a+; =2 2 :
BT w12 ox., 8§12 al’.lz

Y'Y ) ~ (0
¢ '}gz”

1 9¢ 9 { (0 (0)
= = 2. PV, V£
z B, By, ( ) ATRATE 1

(0),2 } 6.9)

) (312 ) Vv f1,
with the additional scaling
0 20 ~ (0
o € g (0) (6.10)

g, % 2
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and

= € . (6. 11)

We next turn to (3.1) and write it in the form

{ Tt I me Rl B £
=12 ST REROAY
©) afz(o) afz(o)
- S T R T 12
H (£ Bet -1z dex , (6.12)

We note that the second term on the right-hand side of (6,12) is clearly of

(0)

order unity,while H(f ) is at best of order unity. The third term is

{0)
ag
8 (0 3~ | % |
Yiz2 Bex 2 T ¢ X2 ex (6.13)

The scaled version of (6,12) is then

6 ( ’ )
- + V.. -2 f = Of(1) (6.14)
ot ~l2 8§12 82312 :

which indicates that

1y  ~1(1)y 06
£,7 = 1, 7€ | (6.15)

M

and verifies the crude estimate of the behavior of f,z
We next examine the question of whether, for some value of §,
the € expansion used in the paper becomes invalid. The ratio

(1)

2 1-38
-——(—6') ) € (6.16)

g,

€f

becomes of order unity for 6 = 1/3. We then must examine the contribution

to f; arising from ;fz(l) and compare it with the contribution from gz(o) .
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The contribution is

/2
v12 €
' 9¢ ) 8 (1)
dv S dx i, ( - S (6.17)
w12 piot ) a§1z axl axz) 2 _
V1270 ¢z, 1) =v;

The spatial volume of integration is of order unity for X determined by

2
(6.1). Further,

st 1)
0
_é-;(L ( _.__._) : avz ~ 1 . (6.18)
w12 -~12 .12
Thus, the integral in (6.17) is of order
1/3
V].Z €
2
S ]v12| dX-lZ ~ €. (6.19)
Vip T 0

1)

We therefore conclude that although fz

i <<
diverges for IXIZI 1,

the contribution to the kinetic equation for £, is of higher order in € and,

1

thus, the original ordering is not upset for & > 1/3.

Vi, THE BOLTZMANN AND CHOH-UHLENBECK RESULTS

We can now go back and point out the connection between the present
work and the Boltzmann and Choh-~Uhlenbeck results.
To this end, we first go back to (2.9) and (2.10) and write them as

(0)

S dx, dv, ©(12) S__ (12) [fl(O)f(o)+ gz(o)(O,et,IZ)] (7.1)

861: 1
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and
o1, (0).(0) . _ (0)
1 § -
5 = ) dx,dv,0(2) (5 -5 ) R A - (t=0, €t,12)] .

, "(7.2)
In congidering (7.1) we immediately note that the S o Operator projects

(0)

2 into the phase space region in which it vanishes, As

the arguments of g
. 1 .
for the ff term in (7.1), we note that Bogoliubov has demonstrated that this

is just another version of the standard Boltzmann collision integral. The

(0)
.

H theorem then guarantees the behavior of f
We next turn to (7.2). The O (12) operator restricts X1 to be of
order unity at time t or the integral will vanish. Trajectories which have

X2 (t) ~1 at time tand X1 (0) ~1 are the only ones which will contribute

to the integral. Thus, we require

£, ® - x, (0] < 1 (7.3)

or, estimating, :
< . .
ly I e <1 | (7. 4)
We can write (7.2) as
oM
8t~ By, Sdzlz AEPY (7.5)

where the vector ~l:‘ vanishes if |X12.l > 1/t and is at most of order unity if
< . ,
|X12| 1/t. Thus
(1)
of 1

-~ 3 (7.6)
Bt 3

and this contribution is well behaved as t becomes large.
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We have then justified the original decomposition of (2. 8) inta
(2.9) and (2.10) and have demonstrated that the standard Boltzmann result
obtains.

The next order result is, from (1. 7),

afl(Z) afl(l) afl(0) " i
. = t) . 7.7
ot * o€t + 2 S df,iz dl’.z O (12) fz (t, €t, € t) ( )
o€t
Upon removing secular behavior, we get
ar ! , @ N Z
- (%, €t,€ t) + y (et,et) = de dv _ ©(12) £ (o0, €t, € t) (7. 8)
o€t 2 x,dv, 5
o€ t
and
oz %) afl(” , 5 ) 2
5t e (et €t) - o (o€t et)

_ (1) 2 1) 2
= Sdﬁzdxz o6(12) [f2 (t, €t, €t) -fz (o0, €t,€7t)] . (7.9)

We, of course, expect that (7. 8) will provide corrections to the Boltzmann
equation and that (7. 9) will describe the quick approach to the collisional
time scale.

From(3.1), we get

t
(0) 1 (0) p 1
fz(l) (t) = g atr T (12)(e-tY) Sdﬁ3dx3 [0(3)+0(23)] F (123)C ‘to)f;o)

‘o

(0)
1 %3y, L (0)_(0),(0)
f1 f1 fl

(0) S
-H 7 (12) (t-tg) S dt! 3‘ dx ,dv , ©(13) e
%o

This equation continued on next page.
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t
) | (0
L-H12) (t-tg) S dt!Sdi;h 5 4v, oes) et (23)t°°f1(0)ffmf1(0)
to |

: t
(0) (0) -
4 e -HU(12)(t- to) 2 (t ) - S‘ ait e-H (12)(t-t' )V o8 _(0)

e f

1
Y12 Bex 2 (t') .

t
0 (7.10)

In writing (7.10) we have used (7.1) and the fact that the S__ operator pro-

(0)

jects g, into the region in which it vanishes,

(1)

For substitution into (7, 8) we need fz for |§12| =1and for ¢

large. We note that f @) itself cannbt possibly be secular in this range of

phase space since x However, con-

12
1)

tributions to f can arise from correlation functions whose arguments

cannot possibly be parallel to Vize

are such that x., was parallel to v

12 12 at some time. In principle, we then

should use the correlations corrected for the exponential behavior that we
found earlier, This is one of the essential differences between the present
treatment and earlier treatments of this problem.

The last term on the right-hand side of (7.10) then vanishes since

(0)

the €x derivative of g, is only nonzero if X1 is parallel to Y2 We
can now rewrite (7,10) in the form
(0)
0= (ax oy, (o Mzsyie-tg) _ _-m%0z)e- “to)) £(0); (0); (0
2 -3 1
‘ (0) (0) '
' - 1%
4 S ap o H  (2)-t )de dv v 3 ~H(123)(t"tg) ;(0)(0).(0)
‘0

t {0) . (0) ‘
+g gt o-H02)(t-t) 5%3%3 (6(13)+e(23)) L-H 123)(E'-tg)
t

0 . . . '
This equation continued on next page.
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X { £190) ¢ (0)(12) + f( Y2) gz( )13) +f(0)(1) gz(o)(23)+g3(o)(123)]
(0) {0 o
Sdt. o~ H D2)e-to) {S‘ x4 dy 5 O03) [(e-H (13)(teo -tg)_ ~H  (13)(t .to)>

. e—H(o)(IS)(t‘-to)] ((0),(0),(0)
| 1 1

(0)

(0) Y
(e-H (23)(te0 -tg) _ -H (23)(t ~to))

+ Sd§3dx3 O (23) [

\ e-H(O)(ZS)(t'~t0)] fm)fm)fw)}
1 1 1

(0),..,
¢ o H (12) (e -tg) fz(l) (t,) (7.11)

The second term on the riglit-hand side of (711) vanishes under the assumption

that t is less than (x |/|v l since the upper and lower limits of the x3”

integration are then identical.

We next consider the term

t
- (0) - ) - (0) 1 '
g apr o7 (12)E=%0) Sdﬁsdheus) o H T 3NE-t0) (0D (0D () (g 1z
t
0

which can be written

t

(0) ' (0) . :
Sdt' o H (12)(t-tg) de av H(o)(13) o H 13)(t1-t,) fl(o)fl(o)fl(o). (7.13)

to

The term in the Xl3, integration which would add to (7.13) in obtaining it from
T w13y

(7.12) vanishes for the same reason as given above after (7.11). We can now

integrate (7.13) and get
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0 (0) (0)
&, dv ( 002 ¢- to) _~H (12)(t-tg) _-H(13)(t- to)) £ (0) (O)f(O
(7.14)
Clearly, the terms involving particles [2] and [ 3] can be handled in the .
same way. Thus, (7.11) becomes
(9) (0)
S‘dx dv [ (123) (t-tg) | _-H''(12)(t-to)
w3 w3
1 0z)etg) _-Eas)e-t0) _e-H(O)uz)(t-to) a1 23) (-t )] £ {0 (95 [0)
t 1 12)(¢-t 0V 13) (teg-tg) -H OV 13)(t'-tg)
_S"dt.e- ”(_O)Sdiisdxs[ o) (¢ w-to) g 2
tO
(0) (0) '
+0(23) (e-H (23)(teo-tg) _ -H T(23)(t —to))] fl(o)fl(o)fl(o)

t
- 4(0) \ g0 "
# (a0 (o 0y (o3 +0@3) o (2N

%o

X [fl(O)(3) gz(o)(lz) + 11%2) gz(o)(l3) + f( 1) gz(O)(23) "y .

A (123)]

=1 Oz)¢-tg) 1)

(0) 1) (0) (1) (
+ e [fl (l)f1 (to,et,Z) + fl (Z)f1 (tO,Et,1)+gZ (to)
(7.15)
Mow consider the contribution to (7.15) arising from
t
(0) . (0) ,
g atr o T (12)(e-th) 5%3@3 (e(13)+e(23)) o ~HT(123)(E!-t0)
to B
x £196) ¢, %02 . (7.16)

A typical set of trajectories contributing to (7.16) is shown in Fig. 6. The

same figure with [ 1] and | 2] interchanged is also appropriate. Note that
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there is a [12] interaction prior to t, and there is thus a nonzero value

0
for gz(o

)(12). Further, there is a [13] or [ 23] interaction as required by
the presence of ©(13) + 6(23). Finally |':£1zl <1 at time t. We note that
Vthe distance BC is of order Xl(é»to) ~ AC. Thus, assuming the integrand
of the phase space integration to be of orcier unity, the integral itself will be
of order 1/|Xl‘2(t'to)2 because of the solid angle. The further t' integra--
tion then yields the behavior l/t-to. It is clear that if a greater number of
binary interactions had occurred in the interval t - t0 which still satisfied
the above restrictions, 'a result would have been obtained which vanished

more rapidly than (t-to)_l.

The terms
t

(0) .
Sdt' JH2)(t-t) §d§3d.‘,’.3 [9(13)

to

-H(O) (0)

(123)(t'~tg) ;(0)
07f g, '(23)

1O 123)(t1-t)

+ 0(23) e fl(o)(Z.) gz(o)(13)] (7.17)

also vield a behavior of 1/(t-t0) from arguments similar to those given above.
Figure 7 illustrates the trajectories appropriate for carrying out the details.,

Of course, [1] and [ 2] can be interchanged.

(0
3

noting that at least two binary interactions must have occurred prior to t

We can dispose of the terms arising from g )(123_) immediately by

0
for these terms to be finite. From solid angle consideration these terms will

vanish faster than 1/(t-t0).

We finally consider the terms
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t

(0) \ 10 .
S‘ gt o H(12)(t-t') 5%% [6(13) -H (123)(t'-tq) (0)(2) (0)(13)

t
0 (0)

v o(23) o U23)E-t0) %) gz(o)(23)] (7.18)

and rewrite the first term in (7.18) as

t

S' dt! e'H(O)‘lz)(t'tO) Sd§3dxs o (13) e'H(O)(B)‘t"tO) gz(o)(13) fl‘O)(z)
tO
+§tdt, (e-H(O)(lZ)(t-t') -HOz)- -t0)) gdx3dX3 o(13) e 1) e1g)
0 X ( )(13)f(0)( 2)
+S'tdt. e-H(O)(IZ)(t-t') 5%3%3 o(13) (e-H(O)(123)(t'-t0)__e—H(O)(l3)(t'-t0))
%o

X (O)us) f(o)(Z) .

(7.19)
The expression
.(0) '
- S‘dmdh o(3) ¢ (13t -to) o ( (13)f(0)(2) (7. 20)
clearly depends on vi and v but not on X5 .Then,
(0) : 10
( o H 2Nt -HELZ)(E- tO)) Gy, v,) =0 (7. 21)

for ]xlzl <.1, if both operators project G into the phase space region before

a [12] interaction occurs. Thus, (7.21) is true if both

1
- > i
t-t, | ) (7.22)

Y2l
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3
We thus conclude that the second line of (7.19) vanishes faster than 1/ (t-to) .
This follows from the argument that (7.22) forces us to consider t ® t' in

order to get a nonzero contribution. Then, substituting t for t' in the

-u(0) .
e (13)(t"-to) operator yields

1

t'—to

|v13' < (7. 23)'

in order that gz(o)(13) is not projected into the region in which it vanishes.
We thus find at least a 1/(t—t0)3 decay from the velocity integration alone.
A typical no;wapishing trajectory contributing to the third line of
(7.19) is shown in Fig. 8. We see that there must be a [13] interaction prior
(0)

to t_ to keep g,

0 (13) nonzero and there must be a [13] interaction in the

interval t- to because of ©(13). We also require a [12] interaction at time
t and a [12] or [ 32] interaction so that the H operators do not cancel. By
comparison with the previous cases, we see that this contribution will cer-
tainly decay at least as 1/(t—t0) and most probably faster.

In view of the above, we may write (7.15) as

(0) (0) (0) 5 2y
1)(t) - S‘dx dv3( -H'(123)(t-tg) e -HYM12)(t-tg) e-H (13)(t-tq)

HO2)e-tg) _-HD@3)i-t9) e-H‘O’uzxt-to)) £(0),(0),(0)
1 1 1

(0)
pe HA2)(-t0) (fl(_o»)(z)fl(”(t et,1) + £ e Mt et 2) + g (t,€t) )

(0)
4o H (12)t-tg )S‘ gt g‘dXS av

t

This equation continued on next page.
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(0) ' (0)
[6(13) Gt ) (£ £{%%) + SAERT) FAEY
1%t -mO@3)e_-tg)y 7.(0),) L (0)4,, - (0) (0)
+ ©(23) (e -e w )(fl (2) £ (3)+g, (Z3,t0)) £

+ A(t-to) + B(t-to) . ‘ , (7.24)

Here A(t- to) includes all the terms which behave as 1/(t—t0), while B
includes those which decay faster than 1/ (t-tO).

We then finally get

lim of (1) of (0)

lim
~-H
L + L = S.dx dv_ ©6(12) e
o€t 2 el w2
t-to"’°° det t-t0—>°°

@ a2)e-to)

(0) (1) (0) (1)
X (fl (1) £772) + f) (Z)f1 (1))

(0) (0) i (0)
S'diizd..‘izdx av, 002) (e-H (123)(t-tg) __-H (lZ)(t—to)e.H (13)(t-tg)

(0) (0) (0) |
H'(12)(t-tg) -H' (23)(t-tg) , -H (12)(t-t0)> fl(O)(l)fl(O)(z)fl(O)(B)

(7.25)
which is the standard Choh-Uhlenbeck result.

However, we note that in obtaining (7.25) we have dropped the term

. (0)
im _-HU(12)(t-tp) gzu) )
t-tqﬁ °0

(7.26)

by assuming it to vanish. In fact, we get no information on g, (1 )(O) in this
order and,in principle,must determine it by going to next order. We also

observe that the term A(t—to) produces an error of order € only if we require
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t-to ~ 1/€. This also entails computing to higher order to examine the
€t dependence of the various functions involved. These higher order cal-
culations are not dbne here but have been carried out in a paper to appear
subsequently. The results verify that (7.25) is correct.

We next turn to the time evoluti.on of the system predicted by
(7.25). To do this we need some information which follows from the

Boltzmann equation (7.1). We know that as €t —®, we have

3/2 2
(0) (0) m m (0)
f - n —_— exp - v -V (7.27)
1 (ZnKT(O)) 2170 <"“ - )
where
W0 = [ oy O

a(0y0) gd v fl(0)

~on

(0) ..(0) 2
3 o7 1 (0)\2 . (0)
2 m 2 S.di’. (V'V ) £ (7.28)

Further, it follows from (7.1) that for all €t

o oy el 7. 29)
det - det - det - ~ ' :

From (7.25), we have

Bn(l) Bn(o)

+ =0
J€t 862t
_5%_ (n(O)X(l)+ n(1)\,(0))+ 82 L (00 _
v - 9e“t ™

st (3% 3 o) 0 i (30
d€t

This equation continued on next page.
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_ . 99
- S‘d11d32dl3d’£zd§3m1 ox 5_ol123) -5 __(12) S_,(13)

-S__(12)S__(23) +5_ (12)} (0) 1‘?)f1(°)

Q . (7.30)

By secularity removal, (7. 30) yields

o) oy® 0 (@ (@) _—
det B¢t ae’t et et
and
(1)
3 (0), aT"!
5 B K ger - Q . (7.32)

We can now return to (7.25) and consider integrating it with respect

to €t to search for secular behavior. In the limit as €t — % we know that

(0)
ot

8€2t

- 0 (7.33)

(0)

since f takes on the form (7. 27) and (7. 31) holds. We also know that the

(0)

Choh-Uhlenbeck triple collision term vanishes if fl is Maxwellian. Thus,

the only secularity producing term in (7.25) is

) o 1y + M o
Sdiizdxze(IZ) S_co(lz) [fl (o0, 1) fl (00, 0, 2)

+ fl(o)(oo, 2) fl(l)(oo,oo, 1)] (7.34)

which must therefore be set equal to zero. This leads to

MW, o L (0)
£ (,0) = )

() (a+é-z+yv2) (7.35)
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which we recognize is simply a perturbed Maxwellian, with «, ﬁ, and
determined by normalization. We therefore conclude that if (7.25) has a
well-behaved (secularity-free) solution, although we have not found a for-'
mal H theorem, the system does tend to thermal equilibrium. It is of
interest to note from (7. 33) that the system apparently prefers not to evolve
on the €2t scale, and that we can, at least to this order, assume that an

2
asymptotic representation is achieved without an € t dependence.

VIiI., CONCLUSIONS

We have seen that it is possible to remove secular behavior to the
order we have gone and obtain significant information on the long time,
long space behavior of the various functions in so doing. We have also
seen that the singular behavior for |X12| <<'1 does not influence our results
to the order we have gone.

At first glance one might think that some of the above conclusions
contradict well known results of thermal equilibrium theory. In fact, upon
closer examination one finds that all functions reduce, as they should, to
their thermal equilibrium counterparts. It is clear that the long time, long
space behavior will be exhibited in thermal equilibrium in examining the
fluctuation spectrum.

Finally, we wish to comment on the various terms which appear with
the decay 1/t. This ty;pe of behavior has been found by Green and Piccarelli. L
Such terms will clearly give rise to logarithmic behavior in the next order and
thus one should expect In€ terms in the expansion., These terms have, in

fact, been found16 and will form the basis for a subsequent paper.
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APPENDIX

We now wish to show that the result of considering the integration

limits to be independent of x ) for I_ and I, in Section III is cor-

13 2 3
rect. From (3.17) we have
t
0
S‘dt' S (t-t') (12) S dx dv O (13) S (123 23) f(o) 1( )1(0) . (A.1)
0
In relative coordinates we have
o13) = 8 %m02) - u23,23) + v, - =2 - v, - =2 . (A.2)
~13 9x .. w1l 0x .
~13 ~13
Thus, (A.l) becomes
t
(0) (0)
) -
Sdt S_(p-n12) Sdi3dx3 (5%2) - 1023, 23)
0
9 9 (0).(0).(0)
b Y g Yt ) S.a(123,23) 1101 . (A. 3)
~13 ~13
We next note that ¢
= - " 1
S_pen12) Ix 5l = x5 g:ﬁl(t ) dt"| (A. 4)

tl
where v is obtained from the solution of the two-body problem.

We can then write (A.3) as

t
liﬁ13'f X1(t”)dt”|=1
g dt'y dxydy, S ., 02) (H(O)(IZ) - H(O)(123,23))S_t,(123,23)fl(o)fl(o)fl(o)

)5 - {. ¥, (£ de|=0

This equation continued on next page.
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t B
9 9 (0).(0)_(0)
t ¢ —— - -— }S 2
+S dt dx3d¥3 S (44 (12) (1'»13 ox 1 ox ) (123,230 54
~13 13
0 4]

(A. 5)
where & and f are the same as the limits of the first integral in (A.5). The
first integral in (A. 5) can be written

K (0),.(0)..(0)
1
Sdt S. dx,dvy gn S ,02) S_,(123.23) £ g (A. 6)
We further rewrite (A.6) as
t B
9 (0); (0) (0)
| i,
Sdt oo dxdvy S_ ) 02) S_,(123,23) £
0 a
1 R B .
IxB {m vt at |=1
t (A.7)
9 ' (0).(0)_ (0)
- v 2
Sdt 5w dxydv, S ,n(2) S_,(123,23) £ f )
0
P |
- t” dt” = O
?.5.]_3 {m Xl( ) = £

Our object now is to show that the last term in (A. 5) cancels the

second term in (A.7) leaving a finite term plus the secularity producing term

that we have already obtained in IZ' Thus, upon using Gauss' theorem, the

last term in (A. 5) becomes
' ' (0).(0),.(0)
‘Y dt S‘ (t t[)(12) S '(123,23) X1(t ) - dg dX.3 fl fl fl (A. 8)

where O is the surface of the sphere shown in Fig. A.1l. To treat the second

integral in (A.7) it is convenient to write the limits in explicit rather than
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implicit form. Thus we get

t
= " n
X3 S Xl(t ) dt
t"l
for the lower limit and t
= 1t 11
X3 = }.(0) + S. Xl(t ydt
tm
for the upper limit. We therefore write
% .=1(0)- 5 v, (t")at"
w13 T ft %1
t
9 (0),(0),(0)
- 1 —
Sdt Fya S‘dx dv S (t- t,)(12) S (123 23) f 1 fl
0

=+ v, (t") dt"
""13 !t"'

(0),(0), (0)
ALy

= 1y .
+§ S e 12) 8_,,0123,23) v () - dg dv o £7f)
()}

(A.9)

(A.10)

(A.11)

The last result follows from simply carrying out the time derivatives using

> 9% 4.
J
at'" Z 3t
j=1
Thus, (A.l) becomes
t B
(0) (0).(0)
T
Sﬂdt at! d§.3dX3 S_(t_t,)(IZ) S (123 23) f 1 fl
0 o
+.§ dt'S dx 2) v, - =2 (123, 23) £
w3 m3 -(t-t') ~13 3X13 -t'

(A.12)

(0) (0, (0)
1 f1 fl

(A.13)
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which essentially agrees with (3.22) since the Hr(l.%)too terms can be
treated in a similar fashion to those above and the differences between
the H and Hr operators vanish. It is clear that arguments similar to

those used above can also be used on (3, 30) in examining 13.
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Fig. 1 The [23] -[13] trajectories.
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Fig. A.1. Sphere of integration for (A. 8).
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Fig. 2. Cone of allowed velocities.
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Fig. 3. Trajectories for (3.23).
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$

Fig. 4. Trajectories for x = +90 in (3.32). .

~13
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Fig., 5. Trajectories for (4.2).
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Fig. 6. Trajectories for (7.16).



652140

Fig. 7. Trajectories for (7.17).
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Fig. 8. Trajectories for the third line in (7. 19).



